AP Calculus AB Stuff You Must Know

Algebra Stuff				Trig Stuff Identities
Slope: $m=$ Point-slope Standard Fo Distance Fo \qquad	$\begin{gathered} \begin{array}{l} \frac{1}{1} \\ 1 \\ y-y_{0}= \\ x+B y= \\ d=\sqrt{(x} \\ \hline \\ \hline \end{array} \\ \hline \sin \theta \\ \hline 0 \\ \hline 1 / 2 \\ \hline \sqrt{2} / 2 \\ \hline \sqrt{3} / 2 \\ \hline 1 \end{gathered}$	$\left.x_{0}\right)$ alues $\cos \theta$ 1 $\sqrt{3} / 2$ $\sqrt{2} / 2$ $1 / 2$ 0	 	$\begin{aligned} & \sin (2 x)=2 \sin x \cos x \\ & \cos (2 x)=\cos ^{2} x-\sin ^{2} x \\ & \cos (2 x)=2 \cos ^{2} x-1 \\ & \cos (2 x)=1-2 \sin ^{2} x \\ & \sin ^{2} x=\frac{1-\cos 2 x}{2} \\ & \cos ^{2} x=\frac{1+\cos 2 x}{2} \\ & \sin ^{2} x+\cos ^{2} x=1 \\ & 1+\tan ^{2} x=\sec ^{2} x \\ & 1+\cot ^{2} x=\csc ^{2} x \\ & \sec x=\frac{1}{\cos x} \\ & \csc x=\frac{1}{\sin x} \\ & \sin (-x)=-\sin (x) \\ & \cos (-x)=\cos (x) \\ & \tan (-x)=-\tan (x) \\ & \cot (-x)=-\cot (x) \\ & \sec (-x)=\sec (x) \\ & \csc (-x)=-\csc (x) \end{aligned}$

Differential Calculus Formulas and Rules

| $\frac{d}{d x}(x)^{n}=n x^{n-1}$ | $\frac{d}{d x}(u v)=u v^{\prime}+v u^{\prime}$ | $\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}}$ |
| :--- | :--- | ---: | :--- |
| $\frac{d}{d x}(\sin x)=\cos x$ | $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ | $\frac{d}{d x}(\arccos x)=\frac{-1}{\sqrt{1-x^{2}}}$ |
| $\frac{d}{d x}(\cos x)=-\sin x$ | $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)$ | $\frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}}$ |
| $\frac{d}{d x}(\tan x)=\sec ^{2} x$ | $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ | $\frac{d}{d x}(\operatorname{arccot} x)=\frac{-1}{1+x^{2}}$ |
| $\frac{d}{d x}(\cot x)=-\csc ^{2} x$ | $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$ | $\frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{\|x\| \sqrt{x^{2}-1}}$ |
| $\frac{d}{d x}(\sec x)=\sec x \tan x$ | $\frac{d}{d x}(\ln x)=\frac{1}{x}$ | $\frac{d}{d x}(\operatorname{arccsc} x)=\frac{-1}{\|x\| \sqrt{x^{2}-1}}$ |
| $\frac{d}{d x}(\csc x)=-\csc x \cot x$ | $\frac{d}{d x}\left(\log _{b} x\right)=\frac{1}{x \ln b}$ | |

Applications of the first and second derivative

Curve Sketching

- To find a critical value, set $f^{\prime}(x)=0$ or undefined
- Use a sign chart to determine if the function has a relative extrema. Make sure you write sentences summarizing the results.
- Use can also use the Second Derivative Test to verify extrema. Suppose that x_{0} is a critical value. If $f^{\prime \prime}\left(x_{0}\right)<0$, then x_{0} is the x-coordinate of the relative maximum. If $f^{\prime \prime}\left(x_{0}\right)>0$, then x_{0} is the x-coordinate of the relative minimum.
- To find points of inflection, set $f^{\prime \prime}(x)=0$ or undefined. Then, show that the sign of $f^{\prime \prime}(x)$ changes as x passes through that point.

Three Important Theorems

Intermediate Value Theorem

If a function, $f(x)$ is continuous on a closed interval $[\mathrm{a}, \mathrm{b}]$ and y is some value between $f(a)$ and $f(b)$, then there exists at least one value $x=c$ in the open interval (a, b) where $f(c)=y$.

In other words, a continuous function must pass through every y-value between $f(a)$ and $f(b)$,.

Mean Value Theorem

If a function, $f(x)$ is continuous on a closed interval [a, b] AND is differentiable on an open interval (a, b), then there exists at least one value $x=c$ in the open interval (a, b) where $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

In other words, there is at least one point on a smooth curve where the tangent line can be drawn so that it is parallel to the secant line drawn through the endpoints of the interval.

Rolle's Theorem

If a function, $f(x)$ is continuous on a closed interval $[\mathrm{a}, \mathrm{b}]$ AND is differentiable on an open interval (a, b) AND $f(a)=f(b)$, , then there exists at least one value $\quad x=c$ in the open interval (a, b) where $f^{\prime}(c)=0$.

In other words, if the endpoints of a differentiable function have the same y-coordinates, there is at least one point inside the interval where the slope of the tangent line is equal to zero. This is a special case of the

Integral Formulas

$$
\begin{array}{lll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c ; n \neq-1 & \int \tan x d x=-\ln |\cos x|+c & \\
\int \frac{1}{x} d x=\ln x+c & \int \cot d x=\ln |\sin x|+c & \int \csc x \cot x d x=-\csc x+c \\
\int e^{x} d x=e^{x}+c & \int \sec x d x=\ln |\sec x+\tan x|+c & \int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+c \\
\int a^{x} d x=\frac{a^{x}}{\ln a}+c & \int \csc x d x=-\ln |\csc x+\cot x|+c & \int \frac{1}{1+x^{2}} d x=\arctan x+c \\
\int \sin x d x=-\cos x+c & \int \sec ^{2} x d x=\tan x+c & \int \csc ^{2} x d x=-\cot x+c \\
\int \cos d x=\sin x+c & \int \sec x \tan x d x=\sec x+c & \int \frac{1}{x \sqrt{x^{2}-1}} d x=\operatorname{arcsec} x+c
\end{array}
$$

(Integration by parts)

Fundamental Theorem of Calculus - Part 1	Fundamental Theorem of Calculus - Part 2	Average Value Theorem
$\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$	$\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)$	If a function $f(x)$ is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$, then there exists some number $x_{0}=c$ such that $f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
Volume of a Solid of Revolution (disk method) $V=\pi \int_{a}^{b}\left((O R)^{2}-(I R)^{2}\right) d x \text { or } d y$	Volume of a Solid with a Known Cross-Section $V=\int_{a}^{b} \operatorname{Area}(x) d x$	
Particle Motion Formulas		
$\text { velocity }=\frac{d}{d t}(\text { position })$	$\text { acceleration }=\frac{d}{d t}(\text { velocity })$	displacement $=\int_{t_{1}}^{t_{2}} v(t) d t$
total dis tance $=\int_{t_{1}}^{t_{2}}\|v(t)\| d t$	$\text { Avg velocity }=\frac{\text { position }_{2}-\text { position }_{1}}{\text { time }_{2}-\text { time }_{1}}$	Final Position = $x\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} v(t) d t$

